We proposed the simultaneous wavelength extensions of single-cavity dual-wavelength pulses by using a single erbium-doped fiber amplifier and one section of high nonlinear fiber. By additionally introducing a polarization dependent isolator, polarization dependent loss based gain profile tuning is adopted to obtain dual-wavelength pulses centered at 1533.7 and 1554.8nm. When both dual-wavelength pulses are simultaneously launched into the same erbium-doped fiber amplifier with the bidirectional pump power, the spectral range of the output pulses could be expanded to be from 1500 to 1600nm. Subsequently, the amplified dual-wavelength pulses further pass through a section of high nonlinear fiber, extending the spectrum from 1.2μm to more than 1.75μm. Dual-wavelength pulses are amplified simultaneously by using only one amplifier, showing the feasibility of the simplification of single-cavity dual-comb pulse amplification. These results show the high potential in the applications such as multi-color laser generation and spectroscopy.
We proposed the emission of wavelength-switchable dual-wavelength-comb pulses in a practical-filter-free cavity. Based on the polarization dependent loss based gain profile tuning, lasings in triple independent gain subregions, i.e. ~1530-, ~1543- and ~1555-nm gain subregions, of erbium-doped fiber, are experimentally observed. Mode-locked by hybrid mechanisms combining carbon nanotube and nonlinear polarization evolution, triple types of dual-wavelength pulses distributed in different dual gain subregions are experimentally obtained. They are distributed in above triple gain subregions and could be switched by adjusting the intracavity polarization controller. These results provide a simple yet effective route to obtain dual-wavelength-comb pulses without additional practical filter and show the high potential in the applications of single-cavity dual-comb metrology.
We investigated a stable single-cavity dual-wavelength-comb fiber laser with significant difference of pulse characteristics. Switchable single/dual-wavelength pulses across 1530- and 1550-nm gain regions are obtained by adjusting the intracavity linear loss. In the dual-wavelength operation, the repetition rates fluctuate and drift in more than 145 Hz, while the standard deviation of the repetition rate difference is measured as 64 mHz in 1000-second monitoring. The passive mutual coherence between pulses is comparable or somewhat better than the reported one under the similar disturbance and monitoring condition. Meanwhile, the significant difference of dual-wavelength pulse characteristics, including spectral bandwidth, pulse energy and dispersion is observed and discussed. The qualified stability is also attributed to the significant pulse difference, which could suppress the nonlinear pulse interaction induced instability. These results provide further physical understanding of the construction of dual-wavelength-comb pulse fiber laser, showing the high potential to promote the performance improvement of dual-comb metrology such as dual-comb spectroscopy, and ranging.
We experimentally demonstrated a fast and effective intelligent optimization algorithm to obtain the self-correcting ultrashort pulse emission from a nonlinear polarization rotation mode-lock fiber laser. The temporal trace corresponding to the optical spectrum is measured by the time-stretched dispersive Fourier transform technique, which functions as the monitoring signal. Subsequently, the genetic algorithm is proposed to finely control the electronic polarization controller for self-correcting pulse generation. The target state could be realized after five generations of iterations. By combining dispersive Fourier transform technique and genetic algorithms, the total adjustment time can be minimized to six seconds. These findings indicate an effective route to obtain robust and self-correcting ultrashort fiber lasers.
Based on PbS quantum dots and single-walled carbon nanotube, we have successfully demonstrated a Er-doped fiber laser capable of switching between two different types of output pulses. By finely adjusting both the pump power and the states of polarization controller, flexible switchable Q-switched and mode-locked pulses can be achieved. At pump power of 29 mW, Q-switched pulses are obtained at a central wavelength of 1560.2 nm. When the pump power increases from 29 mW to 92 mW, the Q-switched rate varies from 25 kHz to 75.22 kHz. Accordingly, the output pulse energy rises from 3 nJ to 5.46 nJ, and the output power changes from 0.08 mW to 0.41 mW. When the pump power is set in the ranges of 92 mW to 107 mW, the fiber laser enters the transition region of Q-switching operation. In this region, evident Q-switched instability with large fluctuations is observed, which is independent of the polarization states. When the laser pump power exceeds 107 mW, the Q-switched pulse disappears, and mode-locked pulses are obtained by altering the state of the polarization controller. The central wavelength of the mode-locked pulses output spectrum is 1561.1 nm, and the corresponding 3 dB spectral bandwidth is 4.22 nm. Coupled Ginzburg-Landau equation are provided to reveal the underlying principles of the transition of these pulse trains. Our work provides a new prospect for achieving fiber lasers capable of flexibly switching output pulse types, further expanding their applications in fields such as laser microprocessing, optical communication and medical lasers.
We experimentally investigated the build-up dynamics of single-cavity dual-wavelength-comb pulses emitted from a ring fiber cavity with Lyot filter configuration. Dual-wavelength lasers are firstly observed by adjusting the polarization controller to control Lyot filter effect. When the pump powers of the bidirectional pumps are set as 57 mW and 49 mW respectively, dual-wavelength pulses with the center wavelengths of 1546.2 nm and 1563.6 nm and spectral bandwidths of 2 nm and 1.6 nm are obtained. Subsequently, time-stretched dispersive Fourier transform spectroscopy is adopted to monitor the build-up process of dual-wavelength pulses. When switching on the pump diode, the three-stage build-up process from background noise to stable dual-wavelength pulses is experimentally observed. The build-up time is at the level of hundreds of milliseconds. These results provide a deep understanding of single-cavity dual-wavelength-comb pulse generation and contribute to the design and control of the single-cavity dual-comb pulses.
A single-cavity triple-comb all-fiber laser is proposed by wavelength/polarization multiplexing. A variable optical attenuator is introduced to equalize the 1530-nm and 1550-nm gain profile of erbium-doped fiber for dual-wavelength pulses. Their repetition rate difference reach kHz level. Meanwhile, by further adjusting the intracavity polarization state, polarization-multiplexed dual-comb pulses with tens-of-Hz repetition rate difference in the 1550-nm gain region are obtained. The more than one-order-of-magnitude difference between the maximum and minimum repetition frequency difference and qualified passive mutual coherence of triple-frequency pulses is highlighted. These results indicate a highly potential triple-comb source for multiple-comb metrology such as triple-comb ranging and frequency measurement and so on.
We experimentally demonstrate a simple, effective and intelligent scheme to obtain image monitoring of femtosecond laser processing of biological hard tissues. A simple mobile phone camera is adopted for imaging of different processing status of biological hard tissue. Subsequently, an automatic recognition method based deep learning is proposed to recognize the relationship between the optical images and manufacturing effect for the fast parameter optimization of laser processing. Correspondingly, the laser processing parameter could be well controlled to obtain qualified laser processing of biological hard tissue. These results indicate an efficient and accurate image monitoring route for intelligent femtosecond laser processing of biological
Due to the simple configuration, qualified passive coherence between pulses, and cost-effective characteristics, single-cavity dual-comb sources attract increasing research interest. Actually, such lasers have been experimentally verified in dual-comb metrology such as dual-comb frequency measurement and spectroscopy. Unlike the single-cavity dual-comb fiber laser multiplexed in other dimensions such as wavelength, direction and mode-locked mechanism, polarization-multiplexed pulses own the unique characteristics of overlapping spectra, intrinsic spectral coherence, and tunable repetition rate difference. They are beneficial for the simplification of additional optical amplification and the satisfaction of versatile requirements of dual-comb metrology. Here, we demonstrated a single-wall carbon nanotube saturable absorber mode-locked Er-doped fiber laser to emit wavelength-switchable polarization-multiplexed dual-comb pulses. The intracavity loss is carefully tuned by an additional optical variable attenuator to define the oscillation windows. In both the 1530- and 1550-nm gain regions, spectral-overlapping, polarization-multiplexed pulses are experimentally obtained with the fine configuration of the intracavity state of polarization. The polarization dynamics and tunable repetition rate difference are experimentally revealed. The repetition rate difference is at the tens-of-hertz level, which is somewhat lower than that of the reported polarization-multiplexed fiber laser with additionally introduced polarization-maintaining fiber. Since there are no additional birefringent media, the polarization mode dispersion for polarization-multiplexed pulses is attributed to the residual birefringence. Moreover, the passive mutual coherence is also highlighted. There results provide a simple yet effective way to design switchable and versatile single-cavity dual-comb pulses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.