A new prime focus corrector for the WEAVE project for the William Herschel Telescope is being produced. The corrector consists of six lens elements, the largest being 1.1 m in diameter. It also incorporates an Atmospheric Dispersion Corrector. Testing procedures for the WEAVE prime focus corrector lens elements are described here. Critical issues encountered in practice, including the influence of the lens size, wedge and weight on the testing procedure are discussed. Due to large lens dimensions, a dedicated test tower and lens support system has been developed to measure the optical surface form errors of the concave surfaces and the transmitted wavefront of each lens. For some of the lens elements, sub-aperture measurements have been performed using an off-axis Hindle sphere and the resultant OPD maps have been stitched together. The challenge of testing a wedged lens with a combination of a long radius convex surface and a short radius concave surface has been resolved by using another lens from the system as an auxiliary lens. The practice of testing convex surfaces via internal reflection/transmission through the lens element has been avoided entirely in this case and some discussion justifying the choices of metrology approach taken is given. The fabrication and acceptance testing of the lens elements has been completed within the expected time and budget, and all elements have been shown to meet requirements.
In this paper, we detail the manufacturing process for the lenses that will constitute the new two-degree field-of-view Prime Focus Corrector (PFC) for the 4.2m William Herschel Telescope (WHT) optimised for the upcoming WEAVE Multi-Object Spectroscopy (MOS) facility. The corrector, including an Atmospheric Dispersion Corrector (ADC), is made of six large lenses, the largest being 1.1-meter diameter. We describe how the prescriptions of the optical design were translated into manufacturing specifications for the blanks and lenses. We explain how the as-built glass blank parameters were fed back into the optical design and how the specifications for the lenses were subsequently modified. We review the critical issues for the challenging manufacturing process and discuss the trade-offs that were necessary to deliver the lenses while maintaining the optimal optical performance. A short description of the lens optical testing is also presented. Finally, the subsequent manufacturing steps, including assembly, integration, and alignment are outlined.
The Gemini High-Resolution Optical SpecTrograph (GHOST) will fill an important gap in the current suite of Gemini
instruments. We will describe the Australian Astronomical Observatory (AAO)-led concept for GHOST, which consists
of a multi-object, compact, high-efficiency, fixed-format, fiber-fed design. The spectrograph itself is a four-arm variant
of the asymmetric white-pupil echelle Kiwispec spectrograph, Kiwisped, produced by Industrial Research Ltd. This
spectrograph has an R4 grating and a 100mm pupil, and separate cross-disperser and camera optics for each of the four
arms, carefully optimized for their respective wavelength ranges. We feed this spectrograph with a miniature lensletbased
IFU that sub-samples the seeing disk of a single object into 7 hexagonal sub-images, reformatting this into a slit
with a second set of double microlenses at the spectrograph entrance with relatively little loss due to focal-ratio
degradation. This reformatting enables high spectral resolution from a compact design that fits well within the relatively
tight GHOST budget. We will describe our baseline 2-object R~50,000 design with full wavelength coverage from the
ultraviolet to the silicon cutoff, as well as the high-resolution single-object R~75,000 mode.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.