The investigation of micro-vessel dimensions in 3D is currently problematic due to their complex structures and fine scale. Quantification of vascular parameters is important in several fields of biomedicine; including embryogenesis, wound healing, diseases characterized by uncontrolled angiogenesis (e.g. tumor growth and metastasis) and the development of implantable bio-materials where a functional vascular supply is critical to their successful integration
into host tissue. However, techniques that can resolve the micron-scaled features of these capillary beds, such as scanning electron and confocal microscopy, do not allow for total image reconstitution in 3D in thick tissue samples [1].
The present study describes the use of an in vivo corrosion casting technique that provides a stable replica of the microvascular network and the subsequent evaluation of three different μCT systems in order to accurately quantify vessel dimensions. Stable replicas of micro-vascular networks in neonatal mouse eyes were first created using in vivo vascular corrosion casting and then imaged using a unique, laboratory scale, μCT unit. This system combines a LaB6 cathode with high-performance electron optics to obtain a high resolution x-ray source. Novel image analysis was then applied to the reconstructions to quantify the morphological parameters of the hyaloid vascular plexi in the developing eyes of post-natal day 2 (P2) wild-type mice. These results are compared to synchrotron scans, establishing vascular casting and x-ray
μCT as a valid laboratory scale experimental method for accurate 3D quantification of the microvasculature, with potential applications to a wide variety of fields in biological and medical research.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.