KEYWORDS: Defect detection, Education and training, Back end of line, Image restoration, Image classification, Data modeling, Scanning electron microscopy, Process modeling, Machine learning, Electron microscopes
We present an automated application for defect detection and classification from ZEISS multibeam scanning electron microscope (MultiSEM®) images, based on machine learning (ML) technology. We acquire MultiSEM images of a semiconductor wafer suited for process window characterization at the imec iN5 logic node and use a dedicated application to train ML models for defect detection and classification. We show the user flow for training and execution, and the resulting capture and nuisance rates. Due to straightforward parallelization, the application is designed for the large amounts of data generated rapidly by the MultiSEM.
We present an automated application for defect detection and classification from ZEISS MultiSEM® images, based on Machine Learning (ML) technology. We acquire MultiSEM images of a semiconductor wafer suited for process window characterization at the imec iN5 logic node and use a dedicated application to train ML models for defect detection and classification. We show the user flow for training and execution, and the resulting capture and nuisance rates. Due to straightforward parallelization, the application is designed for the large amounts of data generated rapidly by the MultiSEM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.