We developed a wideband multi-channel merge-split fast Fourier transform spectrometer (FFTS) using analog-to-digital convertors (ADC) for signal sampling and field-programmable gate arrays (FPGA) for real-time spectrum generation. The FFTS constitutes the backend of the sub-mm wave heterodyne spectroscopy telescope to observe emitted radiations from rotational transitions of CO (J: 2 → 1 and J: 3 → 2) with 50 arc sec angular resolution, aiming to provide the first comprehensive survey of molecular clouds in the Milky Way and nearby galaxies from the northern hemisphere (Hanle, India) at these frequencies. The FFTS provides 8 GHz instantaneous bandwidth at 1.6 MHz spectral resolution (extendable to 0.8 or 0.4 MHz) comprising four channels (spanning 218.898 to 220.898 GHz, 229.038 to 231.038 GHz, 329.087 to 331.087 GHz, and 344.295 to 346.295 GHz frequency bands) belonging to two receiver chains at 230 and 345 GHz operating in a double side band configuration. The channel placement for these four channels is done to cover 13CO (J:2 → 1) transition at 220.398 GHz, 12CO (J:2 → 1) transition at 230.538 GHz, 13CO (J:3 → 2) transition at 330.588 GHz, and 12CO (J:3 → 2) transition at 345.796 GHz with 1.5 GHz margin for red-shifts. Spectrometer design is presented along with spectral line profile simulations, hardware configuration, proposed methodology, system specifications, and scalable field-programmable gate arrays (FPGA) implementation architecture. Elements in the instrument design leverage simultaneous multi-channel acquisition for optimized FPGA utilization by merging the channel pair from the sideband separating (2SB) second stage intermediate frequency (IF) mixer during Fourier transform and subsequently splitting the generated spectra. System characterization results are presented, confirming instruments capable of stable spectroscopy with a wide bandwidth (instantaneous 8 GHz with four 2 GHz channels) and high-spectral sampling (1 / 0.5 / 0.25 MHz corresponding to scalable fast Fourier transform length of 4k / 8k / 16k respectively) that provides adequate spectral resolution for the science case. Wide dynamic range (49.3 dB) and fine radiometric resolution required for relative spectroscopic measurements is realized by sampling IF signals with 12-bits ADCs. Variable spectral accumulation time facilitates improvements in the signal to noise ratio proportional to the square root of the number of coherent averaged cycles, covering various target dependent (longer dwell time for a single target) or scanning dependent (e.g., drift scanning mode matching earth’s rotation) dwell time requirements.
The scanning pencil-beam Scatterometer configuration is pretty effective in covering a large ground-swath by rotating a moderately sized paraboloid dish at a moderate speed. For example, Oscat (Oceansat-II Scatterometer) did cover a ground-swath of 1550km using a 1m diameter reflector that was rotated at 20.5 rpm. The decade-long service (1999-2009) provided by the Seawinds instrument onboard the Quikscat mission followed by an almost half-a-decade (2009-2014) service of Oscat has made this configuration tremendously popular with the global user community. A major drawback of conventional pencil-beam systems like Seawinds and Oscat is the relatively poor spatial resolution. The ground-resolution is beamwidth-limited azimuthally while, in elevation, the resolution is improved by engaging pulse-compression and range-binning. Oscat’s Instantaneous Field of View (IFOV) was 25km wide in azimuth (az) and 50km in elevation (el) at 49° incidence angle. The range-compressed resolution bins had dimensions of 6km (el) x 25km (az). Therefore, qualified wind products could be generated upon square grids no finer than 25km x 25km resolution. According to recommendations of International Ocean Vector Wind Science Team (IOVWST) and Oscat user community, high-resolution scatterometry is the requirement of the day with wind-vector cell-size dimension of 5km or better. One way to improve the resolution is to adopt the SAR principle of Range-Doppler discrimination in the scanning pencil-beam configuration. The footprint can be resolved simultaneously in range as well as in azimuth, thus significantly improving the size of the combined Range-Doppler resolution bin (~ 1km). However, the addition of Doppler filtering to conically scanning radar brings with it its own disadvantages e.g. the limitations of dwell time and the constant change in orientation of isodop lines. This paper presents the constraints in system design of high-resolution scanning systems, the design trade-offs, the methods of handling high PRF, the radar pulsing scheme and the achievable resolution.
This paper reports the development of a millimeter-wave space-borne atmospheric Temperature Sounding Unit (TSU) in Indian Space Research Organization (ISRO). This is ISRO’s first leap towards millimeter-wave technology. The sensor has several new accomplishments to its credit which include among others, the philosophy of sounding channel selection, the new assortment of temperature sounding channels, simultaneous observation of both polarizations of all channels, compact dual-band scanning Gregorian reflector antenna, indigenously developed black-body target for in-orbit calibration, in-house developed millimeter-wave RF front-end and pre-detection automatic gain control method. The prime feature of this instrument is its unique set of channels which can profile the earth’s atmosphere from surface to 40 km altitude with vertical resolution ranging from less than a km near surface to ±2.5 km at 30km altitude. The channels are predominantly off-resonant frequencies in the 50―60 GHz O2 absorption spectrum which offer near-uniform attenuation and hence more channel-bandwidth and better temperature sensitivity and yet have adequate overlap of their weighting functions to achieve the desired vertical resolution. These channels are different and have fewer bands from what has been flown in all earlier sounding missions worldwide e.g. AMSU-A, SSMIS, ATMS etc. The TSU radiometer has been characterized thoroughly using ingenious methods such as low-power active RF energizing along with frequency sweep. This is a compact, low-mass, low-power instrument and has been configured for the ISRO mini-satellite (IMS-2) bus. The flight model with improved hardware performance is being built and a suitable opportunity of flying it is being explored.
The Backus-Gilbert Inversion technique is a proven method of temperature inversion in microwave radiometry with a
scope of trade-off between desired resolution and tolerable noise. In this study it is used to super-resolve brightness
temperature data independent of the inversion process. The BGI-method is applied on scan-mode TMI (TRMM
Microwave Imager) data. The 19.35GHz TMI channel provides brightness temperature data oversampled by a factor of
two and geo-collocated with the 37GHz channel data. Consequently, the enhancement of features in the 19.35GHz image
after BG-resolving is validated by the identification of such features in the 37GHz image. The potential of the BGImethod
as a non-degrading interpolation technique is also tested.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.