KEYWORDS: Data modeling, Visualization, Visual process modeling, Statistical analysis, Data centers, Reconnaissance, Remote sensing, Chemical analysis, Mathematical modeling, Statistical modeling
Probabilistic modeling and visualization of crater shape-maturity relationships is explored in context of remote sensing data acquired by Apollo, Clementine and Lunar Reconnaissance Orbiter spacecraft. Unlike any earlier attempt of understanding relationships between lunar crater features (depth and diameter), relative age of crater formation (Pre-Nectarian to Copernican) and optical maturity of the lunar surface (OMAT values), the joint probability of these variables is modeled. The proposed model is strongly dependent on data density and is not based on deterministic equations as in earlier works. Once developed, a joint probability model can accommodate additional factors through conditional probability weights in a Bayesian network architecture. It is expected that probabilistic modeling will facilitate visualization of relationships between experimental variables and eventually help gain additional insight into lunar cratering mechanisms and linkages between crater morphology, spectral properties and crater degradation mechanisms. The described simple Bayesian network in this work is by no means complete, but illustrates the potential of the proposed novel method with the advent of high resolution images and topographic measurements for the Moon.
Capillary electrophoresis and similar techniques which use an electrified contracting-flow interface (gradient elution moving boundary electrophoresis, electrophoretic exclusion, for examples) are widely used, but the detailed flow dynamics and local electric field effects within this zone have only recently been quantitatively investigated. The motivating force behind this work is establishing particle flow based visualization tools enabling advances for arbitrary interfacial designs beyond this traditional flow/electric field interface. These tools work with pre-computed 2-dimensional fundamental interacting fields which govern particle and(or) fluid flow and can now be obtained from various computational fluid dynamics (CFD) software packages. The particle-flow visualization calculations implemented in the tool and are built upon a solid foundation in fluid dynamics. The module developed in here provides a simulated video particle observation tool which generates a fast check for legitimacy. Further, estimating the accuracy and precision of full 2-D and 3-D simulation is notoriously difficult and a centerline estimation is used to quickly and easily quantitate behaviors in support of decision points. This tool and the recent quantitative assessment of particle behavior within the interfacial area have set the stage for new designs which can emphasize advantageous behaviors not offered by the traditional configuration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.