We examine the problem of transmission control, i.e., when to transmit, in distributed wireless communications networks through the lens of multi-agent reinforcement learning. Most other works using reinforcement learning to control or schedule transmissions use some centralized control mechanism, whereas our approach is fully distributed. Each transmitter node is an independent reinforcement learning agent and does not have direct knowledge of the actions taken by other agents. We consider the case where only a subset of agents can successfully transmit at a time, so each agent must learn to act cooperatively with other agents. An agent may decide to transmit a certain number of steps into the future, but this decision is not communicated to the other agents, so it the task of the individual agents to attempt to transmit at appropriate times. We achieve this collaborative behavior through studying the effects of different actions spaces. We are agnostic to the physical layer, which makes our approach applicable to many types of networks. We submit that approaches similar to ours may be useful in other domains that use multi-agent reinforcement learning with independent agents.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.