Rutting and pothole are the common pavement distress problems that need to be timely inspected and
repaired to ensure ride quality and safe traffic. This paper introduces a real-time, automated inspection system
devoted for detecting these distress features using high-speed transverse scanning. The detection principle is based
on the dynamic generation and characterization of 3D pavement profiles obtained from structured light
measurements. The system implementation mainly involves three tasks: multi-view coplanar calibration, sub-pixel
laser stripe location, and pavement distress recognition. The multi-view coplanar scheme was employed in the
calibration procedure to increase the feature points and to make the points distributed across the field of view of the
camera, which greatly improves the calibration precision. The laser stripe locating method was implemented in four
steps: median filtering, coarse edge detection, fine edge adjusting, stripe curve mending and interpolation by cubic
splines. The pavement distress recognition algorithms include line segment approximation of the profile, searching
for the feature points, and parameters calculations. The parameter data of a curve segment between two feature
points, such as width, depth and length, were used to differentiate rutting, pothole, and pothole under different
constraints. The preliminary experiment results show that the system is capable of locating these pavement
distresses, and meets the needs for real-time and accurate pavement inspection.
KEYWORDS: 3D metrology, 3D image processing, Imaging systems, Cameras, Whole body imaging, 3D modeling, Stereo vision systems, Human subjects, Head, 3D acquisition
The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for
assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology
for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for
enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the
requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via
a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo
matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body
measurement functions dedicated to body composition assessment also were developed. The overall performance of
the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well
as air displacement plethysmography, for body fat assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.