The Open Standards for Unattended Sensors (OSUS) program, formerly named Terra Harvest, was launched in 2009 to develop an open, integrated battlefield unattended ground sensors (UGS) architecture that ensures interoperability among disparate UGS components and systems. McQ has developed a power managed controller, which is a rugged fielded device that runs an embedded Linux operating system using an open Java software architecture, runs for over 30 days on a small battery pack, and provides various critical functions including the required management, monitoring, and control functions. The OSUS power managed controller system overview, design, and compatibility with other systems will be discussed.
The Army Research Lab (ARL), in collaboration with the Defense Intelligence Agency (DIA) and representatives from
industry, recently validated the feasibility of the Terra Harvest architecture by successfully integrating dozens of
Intelligence, Surveillance, and Reconnaissance (ISR) assets at the Trident Spectre 12 (TS12) exercise in Fort Story, VA.
Based on the exercise, it is evident that Terra Harvest will greatly simplify the process of integrating disparate ISR
systems. By reducing this complexity, Terra Harvest will increase the variety of devices U.S. soldiers have at their
disposal giving them a greater technological advantage over their adversaries than ever before. This paper describes
McQ's effort to develop Terra Harvest compliant plug-ins for its UGS along with lessons learned from their
demonstration at TS12.
McQ has developed and delivered numerous unattended ground sensor (UGS) systems for a variety of applications.
The systems provide flexible, wireless communications and numerous options for enabling the user to configure the
system for a specific mission. This flexibility is a two-edged sword as it provides both the intended user with the
functionality they desire, but also a set of vulnerabilities if a malicious user (e.g. political enemy or competitor) would
attempt to disable or reverse engineer the system. McQ has developed various layers of security to address: secure
program and data storage on off-chip non-volatile memory; secure access to JTAG on COTS processors and DSPs
typically incorporated in the design of embedded systems used for remote sensors; authentication of sensors nodes,
relays, and portable user interfaces used in the field that may be compromised; and the management of keys and other
security-related data that is required to be stored and maintained in a distributed system. The associated challenges with
securing embedded systems typically found in UGS will be described, as well as an overview of the solution that was
developed and incorporated into McQ's systems to mitigate the vulnerabilities.
McQ has developed a broad based capability to fuse information in a geographic area from multiple sensors to build a
better understanding of the situation. The paper will discuss the fusion architecture implemented by McQ to use many
sensors and share their information. This multi sensor fusion architecture includes data sharing and analysis at the
individual sensor, at communications nodes that connect many sensors together, at the system server/user interface, and
across multi source information available through networked services. McQ will present a data fusion architecture that
integrates a "Feature Information Base" (FIB) with McQ's well known Common Data Interchange Format (CDIF) data
structure. The distributed multi sensor fusion provides enhanced situation awareness for the user.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.