KEYWORDS: 3D modeling, Data modeling, 3D displays, Visualization, Optical spheres, Spherical lenses, Visual process modeling, Clouds, Proteins, Solid modeling
Structure in 4-D data is visualized with a new modeling algorithm called SBP. The SBP vector fusion algorithm makes 3-D display space models of data having any dimensionality that is input in matrix form. SBP maps points on complete manifolds in 4-D to 3-D to visualize any 4-D data. Starting with familiar shapes in 2-D data, 3-D models are constructed to demonstrate how SBP works. Then 3-D data is modeled in 3-D display space. Finally 4-D data are modeled in 3-D display space. The 3-D display space models are points mapped from collections of points on 4-D manifolds. Two types of SBP models are discussed: the latitude/longitude collection and the helical collection. SBP also maps points on complete manifolds of n-D data to 3-D display space models. The objective of this work is to present what 4-D spheres and tori look like when visualized from 4-D data using the SBP algorithm. This demonstrates the SBP algorithm as a new and useful tool for visualizing and understanding 4-D data, and by implication, n-D geometry. Future uses for SBP could be modeling and studying protein structure and space-time structure in general relativity and string theory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.