The quantification of variability in the mechanical behavior of metallic materials is important in the design and
reliability assessment of mechanical components. A combination of experimental and computational approaches
is often required to alleviate the experimental burden and lack of data in constructing a probabilistic formalism
for material design. The present work aims at integrating material characterization and computational modeling
for the evaluation of variability in the elastodynamic response of random polycrystals. First, a procedure is
presented for simulation of random 2D polycrystalline microstructures from limited experimental data. Second,
the capability of the numerical model in capturing the variation of the scattered waves due to the random
heterogeneities is investigated by introducing a suitable quantity of interest characterizing the intensity of the
fluctuations of the stochastic waveforms. Two important types of heterogeneities are considered. The first is the
inherent heterogeneity due to the mismatch in the grain orientations. The second is the heterogeneity due to fine
scale defects in the form of random intergranular micro-cavities. The numerical model presented in this paper
can be useful for the interpretation of experimental ultrasonic measurements for random heterogeneous material.
The result is also applicable to the validation of multiscale probabilistic models for material prognosis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.