In today's MEMS fabrication, stiction remains one of the fundamental manufacturability challenges. A major step towards eliminating stiction problems is the use of a gas-phase process for the beam release. To date, an anhydrous HF/water vapor MEMS release process has been in production for two years with excellent repeatability and reliability. This stiction-free anhydrous HF/water vapor MEMS release process for accelerometers has been further characterized to determine and solve manufacturing challenges associated with the differences between aqueous-based and vapor-phase release processes. Detailed process characterization to further understand material compatibility with the HF/water vapor release process has been investigated. Various films such as oxides and nitrides of silicon, photoresist, and metals such as gold and aluminum have been characterized for their compatibility with the anhydrous HF/water vapor MEMS release process. Initial results with wafer dicing films are promising as these films show little degradation during extended vapor-phase release processes. The resistance of the wafer dicing films to the anhydrous HF/water vapor process makes it possible to complete the sacrificial oxide release process after substrates have been diced.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.