Infrared spectroscopy enables the investigation of conformational protein changes, associated with human diseases, such as Diabetes II or Alzheimer’s disease. However, the in-vitro investigation of individual molecules remains challenging, but could provide insight into mechanisms leading to structural changes. This is due to the lack of suitable light sources, among other things. Here, we detect polypeptide conformations at attomolar concentration within minutes, exploiting Fourier-transform infrared (FTIR) spectroscopy and the plasmonic enhancement of a single resonant nanoantenna, being enabled by using a highly brilliant, broadband mid-IR laser. We successfully determine polypeptide conformations and compare our results to Globar and synchrotron measurements.
We monitor the configuration of poly-L-lysine proteins using vibrational resonances at 6 µm (1667 cm^-1) by employing a broadband femtosecond solid-state laser for micro-FTIR spectroscopy. This laser system allows for detection of minute amounts of proteins due to a several orders of magnitude higher brilliance compared to standard FTIR light sources such as globars. Thus, absorption signals as small as 0.5% can be detected without averaging, compared to 6.4% using a globar, at a spatial resolution as small as 10x10 µm^2.
Our light source is based on a 98 fs, Yb-doped pump laser at 73 MHz repetition rate, providing 2.5 W average power. By pumping a fiber-feedback optical parametric oscillator (ffOPO) and a post-amplifier, signal and idler beams spanning from 1.33 – 2.0 and 2.1 – 4.6 µm are generated. The tuning range is extended to 8 µm by difference frequency generation between the signal and idler beams and can be further extended by using a pump laser with higher output power.
At 7 µm excellent long-term wavelength stability with fluctuations smaller than 0.1% rms measured over 9 hours is observed, without applying electronic stabilization. This is due to the combination of a ffOPO with a post-amplifier and is distinctly superior over other systems based on free-space OPOs.
Protein sensing is conducted by applying resonant surface-enhanced infrared absorption (SEIRA) spectroscopy, using a single gold nanoantenna. To the best of our knowledge, this is the first demonstration of resonant SEIRA spectroscopy using a single nanoantenna with a laser system as light source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.