For overcoming conventional photoelasticity limitations when evaluating the stress field in loaded bodies, this paper proposes a Generative Adversarial Network (GAN) while maintaining performance, gaining experimental stability, and shorting time response. Due to the absence of public photoelasticity data, a synthetic dataset was generated by using analytic stress maps and crops from them. In this case, more than 100000 pair of images relating fringe colors to their respective stress surfaces were used for learning to unwrap the stress information contained into the fringes. Main results of the model indicate its capability of recovering the stress field achieving an averaged performance of 0.93±0.18 according to the structural similarity index (SSIM). These results represent a great opportunity for exploring GAN models in real time stress evaluations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.