Proceedings Article | 23 December 2022
KEYWORDS: Super resolution, Robots, Mining, Minerals, Data modeling, Solar energy, Convolution, Optimization (mathematics), Image quality, Renewable energy
In recent years, industrialization and economic development in countries around the world have led to an ever-increasing demand for energy. Renewable energies are attracting attention, but they still often use mineral resources such as coal, petroleum, and natural gas, and onshore resources are depleting day by day. These energy and metal resources, such as copper, support Japan's industries and affluent lifestyle, and if Japan continues to rely on imports for most of these resources, it will become difficult for Japan to secure a stable supply of these energies and resources. Therefore, mining of mineral resources on the seafloor is essential to solve these problems, and research on seafloor resource surveys and mining is underway. Because direct human exploration and mining of seafloor resources are naturally dangerous, underwater robots are used to explore and mine seafloor resources. However, due to light absorption and turbidity in water, the underwater image of an underwater robot is sometimes less visible, making exploration unsatisfactory. Therefore, there is a need for higher-resolution underwater images of underwater robots. In this study, we perform super-resolution of underwater images using an improved SRCNN to support research on underwater images of underwater robots. The conventional SRCNN method uses the ReLU function as the activation function, but the improved SRCNN uses the PReLU function and FReLU function, which are extended activation functions of the ReLU function, to improve accuracy.