The Southern Connecticut Stellar Interferometer (SCSI) is an intensity interferometer that is designed to use correlated photon arrival times to determine the geometry of stars. Originally a low-cost, two-telescope instrument that used a 1-pixel single-photon avalanche diode (SPAD) detector at the focal plane of each telescope to record photon events, it is now being upgraded to include a third telescope. This will allow for the simultaneous detection of the photon correlation at three baselines, and thus the ability to map out the two-dimensional geometry of the source much more efficiently than with the two-telescope arrangement. Recent papers in the literature suggest that it may be possible to derive phase information in the Fourier domain from such triple correlations for the brightest stars, potentially giving SCSI an imaging capability. Prior to investigating this possibility, steps must be taken to maximize the observing efficiency of the SCSI. We present here our latest efforts in achieving better pointing, tracking, and collimation with our telescopes, and we discuss our first modeling results of the three-telescope situation in order to understand under what conditions the upgraded SCSI could retrieve imaging information.
The Southern Connecticut Stellar Interferometer (SCSI) is a portable optical intensity interferometer located on the campus of Southern Connecticut State University in New Haven, Connecticut. Since its completion in 2016, the instrument has been used to take engineering data of bright stars. This paper will discuss the data collection and analysis methods, as well as the progress toward reliably measuring a significant stellar photon correlation. Vega has been the main star chosen for test observations to date because its diameter is well known by other methods, and it is not an extended source for the baselines used. The correlation peak in the processed data is compared to theoretical expectations. Given our expected sensitivity, a significant correlation peak is expected for small baselines (~2 m) to appear after a few hours of observation. So far, the observations indicate that the correlation peak is at the expected time delay, and the signal-to-noise ratio roughly scales as predicted.
The Southern Connecticut Stellar Interferometer (SCSI) is a two-telescope astronomical intensity interferometer that was completed in June 2016 and has been taking photon correlation data since that time. It uses single-photon avalanche diode (SPAD) detectors at the telescope focal plane and a central timing module, which records the signals from both telescopes simultaneously. In the observations taken to date, single-pixel SPADs have been connected to signal cables that stretch from each telescope to the timing module. However, we are now in the process of making the instrument “wireless” by using a separate timing module at each telescope and synchronizing the signals recorded using GPS timing cards. We have also upgraded one of the two stations with an 8-pixel SPAD device, which allows us to achieve higher count rates in a variety of observing conditions. In this paper, we report on the current state of the instrument, including engineering tests made in preparation for wireless operation, and we discuss the expected capabilities in that mode.
The construction of a new prototype visible-light intensity interferometer for use in stellar astronomy is described. The instrument is located in New Haven, Connecticut, at Southern Connecticut State University, but key components of the system are also portable and have been taken to existing research-class telescopes to maximize sensitivity and baseline. The interferometer is currently a two-station instrument, but it is easily expandable to several stations for simultaneous measurement using multiple baselines. The design features single photon avalanche diode (SPAD) arrays, which increase the throughput and signal-to-noise ratio of the instrument. Predicted system performance and preliminary observations will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.