The use of exotic optical modes is becoming increasingly widespread in microscopy. Particularly, propagation-invariant beams, such as Airy and Bessel beams and optical lattices, have been particularly useful in light-sheet fluorescence microscopy (LSFM) as they enable high-resolution imaging over a large field-of-view (FOV), possess a resistance to the deleterious effects of specimen induced light scattering, and can potentially reduce photo-toxicity.
Although these propagation-invariant beams can resist the effects of light scattering to some degree, and there has been some interest in adaptive-optical methods to correct for beam aberrations when they cannot, scattering and absorption of the illuminating light-sheet limit the penetration of LSFM into tissues and results in non-uniform intensity across the FOV.
A new degree of control over the intensity evolution of propagation-invariant beams can overcome beam losses across the FOV, restoring uniform illumination intensity and therefore image quality. This concept is compatible with all types of propagation-invariant beams and is characterised in the context of light-sheet image quality.
Another property to control is the wavelength of light used. Optical transmission through tissue is greatly improved at longer wavelengths into the near-infrared due to reduced Rayleigh scattering and two-photon excitation has proved beneficial for imaging at greater depth in LSFM. Three-photon excitation has already been demonstrated as a powerful tool to increase tissue penetration in deep brain confocal microscopy, and when combined with beam shaping can also be a powerful illumination strategy for LSFM.
Recent progress in shaping optical fields for LSFM will be presented.
Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.