High-throughput micro-CT imaging has been used in our laboratory to evaluate fetal skeletal morphology in developmental toxicology studies. Currently, the volume-rendered skeletal images are visually inspected and observed abnormalities are reported for compounds in development. To improve the efficiency and reduce human error of the evaluation, we implemented a framework to automate the evaluation process. The framework starts by dividing the skull into regions of interest and then measuring various geometrical characteristics. Normal/abnormal classification on the bone segments is performed based on identifying statistical outliers. In pilot experiments using rabbit fetal skulls, the majority of the skeletal abnormalities can be detected successfully in this manner. However, there are shape-based abnormalities that are relatively subtle and thereby difficult to identify using the geometrical features. To address this problem, we introduced a model-based approach and applied this strategy on the squamosal bone. We will provide details on this active shape model (ASM) strategy for the identification of squamosal abnormalities and show that this method improved the sensitivity of detecting squamosal-related abnormalities from 0.48 to 0.92.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.