KEYWORDS: Sensors, Contamination, Photonic integrated circuits, Crystals, Temperature metrology, Analog electronics, Data modeling, Quartz, Space telescopes, Space operations
Currently, no accurate models or recent data exist for modeling contamination from spacecraft thrusters to meet the stringent requirements of the International Space Station (ISS). Few flight measurements of contaminant deposition from spacecraft thrusters have been made, and no measurements have been made for angles away from the plume centerline. The Plume Impingement Contamination-II (PIC-II)1 experiment is planned to provide such measurements using quartz crystal microbalances placed into the plume of a Shuttle Orbiter RCS thruster. To this end, the Johns Hopkins University Applied Physics Laboratory (APL) has supported NASA in the development of the PIC-II experiment Flight Electronics Unit known as the Remote Arm TQCM System (RATS), which will measure the contamination in the Shuttle Obiter RCS thruster. The development was based on an ongoing effort between the APL and QCM Research to develop an inexpensive, miniature TQCM controller based on a legacy of QCM controllers developed at the APL. PIC-II will provide substantial improvements over previous systems, including higher resolution, greater flexibility, intensive housekeeping, and in-situ operational control. Details of the experiment hardware and measurement technique are given. The importance of the experiment to the ISS and the general plume contamination community is discussed.
When used on a spacecraft to measure outgassing/erosion rates, a 50 MHz QCM is twenty-five times more sensitive than a 10 MHz QCM, according to theoretical considerations. In a continuation of extending the sensitivity of the QCMs, the frequency range, which is a measurement of mass flux, has increased from 15 MHz to 25 MHz to a now reported 50 MHz crystal sensor. As reported in the previous investigation of the 25 MHz crystal by Wallace, et. al., we again used a thin film interference technique to determine the mass sensitivity of the crystal. Water ice was used as the deposition film and, from known density, interference properties of the resulting film gave the resulting film thickness. Thus the sensitivity of the crystal and also the mass range of operation, with the driving electronics, could be determined. Theoretical sensitivity of the 50 MHz crystal would be 5.657 X 109 Hz/g/cm2 or 0.176 ng/cm2-Hz.
There is a current need for a sensor which can measure minute outgassing or erosion over very long time spans in the space environment. One way of addressing this need is a QCM with very stable output and high mass sensitivity. In order to increase the mass sensitivity. In order to increase the mass sensitivity of the QCM, the crystal has to oscillate at a higher frequency. In the past, assurance that the mass sensitivity at 10MHz as predicted by theory has been provided by nine different experimenters using the same or different techniques. When 15MHz QCMs with an increased theoretical sensitivity became available, they were experimentally exposed to the same molecular source flow as the 10MHz QCMs, to measure their response. It proved to be identical to theory. Historically, QCM sensor discussions have dealt exclusively with plano-plano crystals, i.e., both sides flat and parallel. Now, however, increases in frequency beyond 15MHz call into question whether we still have plano-plano crystals or whether plano-convex now best describes the crystals. Since the diameter of the high frequency crystal has to be less in order for it to oscillate, it becomes harder and harder to assure true plano-plano crystal performance as the fundamental frequency is raised. In this paper, we will discuss experiments which have been performed comparing the mass sensitivity of 25MHz to 15MHz crystals, or the mass range that is available with these high sensitivity crystals. We will also address the plano-plano versus plano-crystals' sensitivities.
Quartz Crystal Microbalance (QCM) sensors have long been used in space to measure outgassing molecules being emitted by spacecraft materials or, alternately, erosion effects made by striking the spacecraft with some external molecular flux, e.g., atomic oxygen. However, the measurements produced by the QCM have been hard to meaningfully interpret because of solar thermal radiation effects. Normally, in a QCM, a sense crystal is exposed to space to measure the appropriate mass flux, but the reference crystal is hidden from this exposure. Crystals used in QCMs not only have a mass sensitivity but also have a temperature sensitive component. When the vagaries of spacecraft motion and thus QCM motion is considered, the sense crystal sees the sun at various times and at various angles. When exposed to sunlight, the QCM changes frequency because thermal radiation strikes and exposed crystal and not the reference crystal. We will report on the findings of a new Thermoelectric QCM with two exposed crystal, and the effects of sunlight on it. With both the sensor and the reference crystal exposed to thermal radiation and thus eliminating the offset frequency, the resulting beat frequency will reflect only the mass flux and the data will be easier to interpret.
The use of quartz crystal microbalances (QCMs) for the measurement of the amount of mass flux that is deposited on a surface for space applications has historically been limited to the use of crystals having a resonant frequency of, at most, 15 MHz, because of the difficulty of working with the small dimensions in thickness that are associated with such crystals. This has limited the lower mass flux measurement to approximately 10-11 g/cm2-s, or 0.20 angstrom/Hz, if the condensate density is near unity. Until recently, this has been a sufficiently precise measurement of molecular flux to satisfy the needs of the experimenter. However, the growing need for the precise measurement of, for instance, the erosion/deposition rate of ion thrustors, the erosion rate on low-orbit satellites and the precise measurement of outgassing over long periods of time, has necessitated increasingly lower mass flux measurement, translating into higher mass sensitivities. With the trend toward reduced satellite size, there is a corresponding need to dimensionally miniaturize the QCMs in order to place them into even smaller spaces. A new series of QCMs and TQCMs (thermoelectrically-cooled QCMs) with crystal frequencies upward to 25 MHz, has recently been developed. These are not only physically much smaller than earlier models, but also extend the mass sensitivity range upward by a factor of 4.84 over the 15 MHz theoretical value of 5.102 multiplied by 108 Hzcm2g, lowering the limit of discernible condensate thickness measurement to approximately 0.04 angstrom/Hz. The new TQCMs also increase the effective (Delta) T, i.e. the temperature differential between the hot and cold sides of the Peltier in the TQCMs from 86 degrees Celsius to 120 degrees Celsius, causing the lower temperature of the crystals to be between minus 75 degrees Celsius and minus 100 degree Celsius when the QCM is operated at ambient temperature. Tests conducted under simulated space environments using these new miniaturized QCMs are the subject of this paper.
A surface acoustic wave (SAW) crystal has been tested to demonstrate its usefulness in a space environment. The testing was done in a vacuum space chamber. The temperature of the heat sink on which the SAW was supported was varied over the anticipated temperature range that the SAW would be subjected to in space (from 100 C to LN2 temperature). The repeatability of frequency, the stability of the device and the long term drift were important features of the test. An empirical determination of mass sensitivity (mass/frequency change) of the SAW was accomplished by measuring the water-vapor outgassing rate of the chamber walls with not only the SAW but also a 10-MHz QCM with a known mass sensitivity. This test not only measured the mass sensitivity by comparison but it also allowed the measurement of the linearity of the SAW''s total dynamic range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.