Directing high laser power spatially and temporally is of major interest for various applications. We developed a
compact and efficient system based on a DMD and consisting of a homemade multimode high-brightness fiber splitter
and a 60-Watt laser diode. This design enables computer-controlled distribution of several Watts of laser power to each
or several optical fibers in the bundle consisting of 7 fibers in this paper (but it can be extended to 19, 37 or more fibers).
The coupling efficiency and extinction ratio were measured and optimized. An overall efficiency of about 9% was
demonstrated by considering all losses due to DMD efficiency, geometric fill factor and fiber coupling efficiency, with
extinction ratios between 20 and 45dB.
Pump-probe techniques are widely used to measure events on time scales much shorter than
the resolution of electronic detectors, and are applied in such diverse fields as ultrafast
spectroscopy, photo-acoustics, TeraHertz imaging, etc. In ultrafast photoacoustics
measurements for instance, a pump beam launches in the sample acoustic waves, which are
detected by a second, temporally shifted probe beam. Typical detection methods rely on very
small changes in the reflection coefficient of the sample surface, requiring an averaging of the
signal to improve the signal to noise ratio. Traditional pump-probe methods use a mechanical
delay line to shift the two pulses in the time domain, where each measurement point
corresponds to a single mechanical position of the delay line. Although very efficient for
small measurement ranges, extending this method in the hundreds of picoseconds or
nanosecond lead to a very long acquisition time, and unpractical length for the delay line.
We present a new, compact detection system, using a compact dual-oscillator ultrafast
laser system, specifically designed for pump-probe measurements over time scales as long 20
ns, with a sub-picosecond resolution. This system does not use any mechanical delay line, and
allows for extremely fast acquisition time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.