Patients with mild traumatic brain injury (mTBI) may suffer from a widespread spectrum of symptoms that arise from the damage of long-distance white matter connections in distributed brain networks. In brain networks, an increasing attention has been devoted to assessing the functional roles of regions by estimating the spatial layout of their connections among different modules, using the participation coefficient. In the present study, we aimed to investigate the role of hubs in inter-subnetwork information coordination and integration by using participation coefficients after mTBI. 74 patients after mTBI within 7 days post-injury and 51 matched healthy controls enrolled in this study. Our results presented that hubs for mTBI patients distributed in more extensive networks such as the default mode network (DMN), ventral attention network (VAN) and frontoparietal network (FPN), somatomotor network (SMN) and visual network (VN), compared with healthy controls limited to the first three. Participation coefficients for mTBI presented significantly decreased in the DMN (P=0.015) and FPN (P=0.02), while increased in the VN (P=0.035). SVM trained with participation coefficient metrics were able to identify mTBI patients from controls with 78% accuracy, providing for its diagnose potential in clinical settings. From our point of view, difference between two groups could be related with functional network reorganization in mTBI groups.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.