The metallurgical and thermophysical process in the laser melting filer wire process are complex, and the interaction between the laser - metal wire - substrate makes the energy distribution requirements more demanding. In order to study the energy coupling mechanism in the high deposition efficiency achieved by inducing a boiling front, the existing characteristics are firstly explored. The author studies the laser energy distribution rules on the boiling front and the substrate surface by the main process parameters and gives an optimal parameter adjustment range theoretically, which has a guiding significance for the actual machining process. In addition, comparing the heat conduction loss of the new method and the common additive manufacturing process (feeding solid wire into the melting pool of substrate), the calculating result reveals that the new additive manufacturing method proposed by our group plays a more positive role on improving the energy coupling efficiency.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.