ZnO is a highly efficient and promising semiconductor material because of its large bandgap (3.37 eV) and exciton binding energy (60 meV). MgO also has a very high bandgap (7.8 eV), and the incorporation of Mg into ZnO can result in an alloy with a bandgap of more than 4 eV . We used plasma immersion ion implantation to dope phosphorus into Zn0.85Mg0.15O for achieving p-type ZnMgO. RF sputtering was used to deposit ZnMgO on a Si substrate. Phosphorus doping was conducted from 10 s to 70 s. Rapid thermal annealing of the samples was performed to remove any implantation defects. A highly dominant acceptor-bound-exciton peak was observed at 3.36 eV by photoluminescence measurements, which continued to dominate from low temperature to room temperature. Donor-bound acceptor and free-electron acceptor peaks were also observed at 3.24 eV and 3.28 eV, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.