Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures arise, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. Usually, thermography is used to measure temporally resolved thermal fields. The thermal cameras are calibrated at black body reference radiators (unity emissivity) for the conversion of the measured thermal radiation intensity to temperatures. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of a study using multispectral thermography to obtain real temperatures and emissivities in the laser metal deposition (LMD) process. For a better understanding of the basic processes, the measurements have been performed first without powder supply and by recording images at different wavelength in subsequent runs.
Laser powder bed fusion is used to create near net shape metal parts with a high degree of freedom in geometry design. When it comes to the production of safety critical components, a strict quality assurance is mandatory. An alternative to cost-intensive non-destructive testing of the produced parts is the utilization of in-situ process monitoring techniques. The formation of defects is linked to deviations of the local thermal history of the part from standard conditions. Therefore, one of the most promising monitoring techniques in additive manufacturing is thermography. In this study, features extracted from thermographic data are utilized to investigate the thermal history of cylindrical metal parts. The influence of process parameters, part geometry and scan strategy on the local heat distribution and on the resulting part porosity are presented. The suitability of the extracted features for in-situ process monitoring is discussed.
Contactless temperature sensing is state of the art and essential part of countless applications in the field of process control and automation. This contribution presents the case of a nondestructive thickness measurement method for polymeric coatings on concrete ground. Two pyrometers and a low-cost infrared camera were taken into account. The particular measurement results were compared with those of a more sophisticated infrared camera. It was found that the low-cost infrared camera has a lower noise level than the pyrometers, even for a single pixel. The opportunity to average over a large number of pixels and to establish a bias correction enables a further noise reduction by almost factor of 10. Furthermore, the temporal resolution of the infrared camera was investigated by means of a well-defined thermal oscillation. It could be demonstrated that the averaged time stamps are correct and the requirement of a minimum framerate of 50 Hz is met. Finally, the temperature transient on a polymer coated concrete block during and after a 10 s heating period was recorded with a pyrometer and the infrared camera. This experiment confirmed the suitability of the camera for the intended measurement method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.