We demonstrate transient changes in the optical properties, specifically the loss, of antiresonant hollow core fibres (HCFs) due to a combination of the sub-atmospheric gas pressure inside the fibre holes post-fabrication and the subsequent gas induced differential refractive index (GDRI) between the core and cladding elements of the fibre; this is temporarily created while the gas pressures inside the core and cladding elements are evolving after the HCF ends are opened up to surrounding atmospheric pressure. Here we show experimental evidence of this effect in two different HCF designs; for both fibres, the transmitted power initially increases, reaches a maximum, and then reduces to its initial level. We show via gas flow simulations that the timeline of this behaviour is consistent with the gas flow rates into the core and cladding elements of the tubular HCF studied and the subsequent transient differential gas pressure. The experimental results also show (in line with GDRI expectations) that this transmission (loss) change is higher at shorter wavelengths. Our results imply that this transient change in the fibre’s optical properties must be considered for accurate fibre characterisation; this is particularly true for long fibre lengths where the equalisation of the fibre’s internal gas pressure with atmospheric pressure could take many weeks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.