In this paper, a whole general design and optimization process is detailedly demonstrated by taking the design and optimization of a 55mm diameter variable curvature mirror(VCM) with a cycloid-like thickness distribution as example. The finite-element analysis to the VCM under each change of main structure parameter is done and analyzed to choose the proper parameter value of each structure to obtain the optimum surface figure accuracy. Finally, the designed VCM can achieve 0.386mm central deflection and RMS 82.84nm within the effective aperture 28.4mm.
Position sensitive micro-channel plate (MCP ) is a kind of high sensitivity detector with low noise, Combined with advanced time-correlated single photon imaging technique (TCSPC) could make a moderate aperture system be sensitive to only one single arriving photon. In this paper, a theoretical model of photon counting imaging with Position sensitive MCP was established and the factor of laser power affecting the detect possibility was analyzed. the three-dimensional point clouds data are generated using Monte Carlo simulation and the typical space target could be reconstructed three-dimensionally. Through the all-chain simulation model the comprehensive performance of the MCP based active three-dimensional imaging system could be analyzed from viewpoint of detection probability, ranging accuracy and signal to noise ratio etc. The application of the position sensitive MCP based active three-dimensional imaging system for long range space objects is verified in simulation condition. The results shows that only a single pulse energy of tens of mico-Joule is needed for the positive sensitive MCP based active three-dimensional imaging system to image the target at the hundreds of kilometers. the counting rate could reach 106 counts/s. And the ranging accuracy of this active three-dimensional imaging system for the objects at 300 kilometers could reach 0.1228meters by simulating with 50 mico-Joule single pulse power.
Space telescopes are widely used nowadays with the development of space optics and manufacture technologies. Large aperture of telescope means better resolution and observation. However, due to the carrying capacity and outline dimension of rocket, the aperture of telescope cannot be too large. In order to get the large telescope, more and more scientists and engineers are coming to a new idea that assembling the large space telescope on orbit. First of all, the paper makes an introduction about the concepts and types of on-orbit assembly for telescope. Then paper presents some projects which are being conducted and takes one project as an example to introduce specific implementation methods of on-orbit assembly. What’s more, high precision robots are needed in this process. Therefore, paper also introduces technologies about the robots for space assembly. At last, the paper summarizes the features and technical difficulties in on-orbit assembly of large space telescope. Furthermore, the paper points out the development directions about on-orbit assembly telescope in the future, which can give some help or guidance to engineers.
This paper mainly introduces the motion analysis and the stress of some components of the full-disc vector magnetograph (FMG). As the connecting part of the FMG and the satellite platform, its main function is to adjust the optical axis of the FMG so that its imaging of the sun remains in the center of the CCD, thus achieving pitch and yaw of the optical axis. The maximum adjusting range is ±12′ and the regulation precision is ±5′′. The kinematic support is used to connect the optical box and the satellite platform. The two Monopods are respectively mounted on the two YZ planes of the optical cabin. The Bipod is mounted on the XZ plane of the optical capsule, which can adjust the pitch and yaw of the optical capsule. The movement of the Bipod is mainly powered by two motors. This paper simulates the force condition of the motor's screw sleeve to calculate the parameters of the motor. This article simulates the upward, downward, leftward and rightward movements of the pitch and yaw motions of the FMG's on-orbit pointing adjustment mechanism. Compared with the results of MATLAB theoretical calculations, the maximum error of the simulation results is 0.7969mm, and the minimum error is 0.0212mm, which basically accords with the ideal sports condition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.