The optics industry widely uses silcones for various fiber optic cable potting applications and light emitting diode protection. Optics manufacturers know traditional silicone elastomers, gels, thixotropic gels, and fluids not only perform extremely well in high temperature applications, but also offer refractive index matching so that silicones can transmit light with admirable efficiency. However, because environmental conditions may affect a material's performance over time, one must also consider the conditions the device operates in to ensure long-term reliability. External environments may include exposure to a combination of UV light and temperature, while other environments may expose devices to hydrocarbon based fuels. This paper will delve into the chemistry of silicones and functional groups that lend themselves to properties such as temperature, fuel, and radiation resistance to show shy silicone is the material of choice for optic applications under normally harmful forms of exposure. Data will be presented to examine silicone's performance in these environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.