Metastable intermolecular composites (MIC) consisting of nanometer-scale aluminum and molybdenum trioxide have been proposed as fast initiators. A compound of this class of material was evaluated as a potential environmentally friendly replacement pyrotechnic material for lead styphnate for use in the primer of the M230 medium-caliber automatic cannon. In addition to removing the lead hazard, laser ignition would also reduce or remove certain hazards due to electrostatic or radio frequency radiation. This study was conducted with both a flashlamp-pumped Nd+3:YAG laser and a fiber-coupled diode laser. The measured threshold ignition energies of the MIC and two other inorganic pyrotechnic compounds are presented. The low ignition threshold, advances in diode laser technology, and compact size of the diode laser indicated that laser diode technology could be an ideal candidate ignition source for the M230 cannon. The candidate pyrotechnic compounds were also evaluated for suitability in laser initiation via measurement of time-to-first-light. This metric provided a measurement of the potential for achievement of the necessary action time required for proper cannon operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.