Longitudinal chromatic aberration (LCA) and transverse chromatic aberration (TCA) adversely affect retinal image quality. Thus, one expects improved visual performance when chromatic aberrations are minimized or eliminated. Systematic evaluation of the impact of LCA and/or TCA correction under broadband illumination is needed. Thus, we developed a system, called the Binocular Varichroma and Accommodation Measurement System (BVAMS) that can be used to measure and correct the eye’s LCA and TCA and to perform vision tests with custom corrections. We demonstrate a measurable benefit in visual acuity only with both LCA and TCA correction.
In optics in general, a sharp aberration-free image is normally the desired goal, and the whole field of adaptive optics has developed with the aim of producing blur-free images. Likewise, in ophthalmic optics we normally aim for a sharp image on the retina. But even with an emmetropic, or well-corrected eye, chromatic and high order aberrations affect the image. We describe two different areas where it is important to take these effects into account and why creating blur correctly via rendering can be advantageous. Firstly we show how rendering chromatic aberration correctly can drive accommodation in the eye and secondly report on matching defocus-l generated using rendering with conventional optical defocus.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.