KEYWORDS: General packet radio service, Convolutional neural networks, Detection and tracking algorithms, Neurons, Control systems, Performance modeling, Data processing, Algorithm development, Data modeling, Network architectures
The ground penetrating radar (GPR) is a remote sensing technology that has been successfully used for detecting buried explosive threats. A large body of published research has focused on developing algorithms that automatically detect buried threats using data from GPR sensors. One promising class of algorithms for this purpose is convolutional neural networks (CNNs), however CNNs suffer from overfitting due to the limited and variable nature of GPR data. One solution to this problem is to use a validation dataset during training, however this excludes valuable labeled data from training. In this work we show that two modern techniques for training CNNs – Batch Normalization and the Adam Optimizer - substantially improve CNN performance and reduce overfitting when applied jointly. We also investigate and identify useful settings for several important CNN hyperparameters: l2 regularization, Dropout, and the learning rate schedule. We find that the improved CNN (a baseline CNN, plus all of our improvements) substantially outperforms two competing conventional detection algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.