Biomedical optical systems and models can be easily validated by the use of tissue-simulating phantoms. They can consist of water-based turbid media which often include inks (India ink and molecular dyes) as absorbers. Optical stability of commonly exploited inks under the influence of light, pH changes and the addition of TiO2 and surfactant, was studied. We found that the exposure to ultraviolet and visible light can crucially affect the absorption properties of molecular dyes. On average, absorption peaks decreased by 47.3% in 150 exposure hours. Furthermore, dilution can affect ink’s pH and by that, its decay rate under light exposure. When TiO2 was added to the phantoms, all molecular dyes decayed rapidly. Photocatalytic nature of TiO2 can be partially avoided by selecting TiO2 with surface and crystal structure modification. Surfactant, normally present in the phantoms with polystyrene spheres, can cause absorption peak shifts up to 20 nm and amplitude changes of 29.6%. Therefore, it is crucial to test the optical stability of inks in the presented manner before their exploitation in water-based phantoms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.