We propose an automatic approach to anatomy partitioning on three-dimensional (3D) computed tomography (CT) images that divides the human torso into several volumes of interest (VOIs) according to anatomical definition. In the proposed approach, a deep convolutional neural network (CNN) is trained to automatically detect the bounding boxes of organs on two-dimensional (2D) sections of CT images. The coordinates of those boxes are then grouped so that a vote on a 3D VOI (called localization) for each organ can be obtained separately. We applied this approach to localize the 3D VOIs of 17 types of organs in the human torso and then evaluated the performance of the approach by conducting a four-fold crossvalidation using a dataset consisting of 240 3D CT scans with the human-annotated ground truth for each organ region. The preliminary results showed that 86.7% of the 3D VOIs of the 3177 organs in the 240 test CT images were localized with acceptable accuracy (mean of Jaccard indexes was 72.8%) compared to that of the human annotations. This performance was better than that of the state-of-the-art method reported recently. The experimental results demonstrated that using a deep CNN for anatomy partitioning on 3D CT images was more efficient and useful compared to the method used in our previous work.
The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.