The life ecology experimental cabinet on China Space Station is a microgravity scientific experimental platform which is suitable for plant individuals, fish, snails, fruit flies and other biological individuals as the research objects. It includes a general biological culture module (GBCM), a small general biological culture module (SGBCM), a small centrifugal experiment module (SCEM), a small controlled life ecological experiment module (SCLEEM) and a microbial online monitoring module (MOMM). The GBCM provides suitable environmental conditions for biological experiments, including temperature, humidity, light, gas concentration, visible light imaging detection, fluorescence imaging detection, program-controlled instructions, etc. The SGBCM internally provides temperature control and imaging monitoring. Other functions are realized by the replaceable culture unit. The SCEM can realize 1-2g gravity simulation in microgravity environment, and is able to support variable gravity biology research and microgravity comparison experimental research. In SCLEEM, it is planned to carry out a closed aquatic organism culture experiment with algae, fishes and snails as members. Algae provides necessary oxygen for fishes and snails through photosynthesis. MOMM is a payload used to detect the presence and classification of microorganisms in the environment. Each module works independently and has an independent electronic control system with the same architecture.This paper will introduce its basic functions, experimental conditions and expandable interface resources module by module. It provides a basis for space biologists to design experiments and a reference for payload engineers.
With the continuous development of software and hardware technology, light field imaging technology has become the representative product of Frontier optics. The process of light field imaging can be divided into two parts: light field information acquisition and light field data processing. In this paper, the development process of light field imaging technology is summarized, and three kinds of acquisition methods of light field are introduced. Also, several main algorithms of light field imaging technology are summarized, whose advantages and disadvantages are analyzed. Finally, the application prospects and research direction of light field imaging technology are pointed out,emphasizing on the dynamic target monitoring based on camera array d the multi target autofocus imaging in special scene.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.