Significance: Prostate cancer is the most common cancer among men. An accurate diagnosis of its severity at detection plays a major role in improving their survival. Recently, machine learning models using biomarkers identified from Raman micro-spectroscopy discriminated intraductal carcinoma of the prostate (IDC-P) from cancer tissue with a ≥85 % detection accuracy and differentiated high-grade prostatic intraepithelial neoplasia (HGPIN) from IDC-P with a ≥97.8 % accuracy.
Aim: To improve the classification performance of machine learning models identifying different types of prostate cancer tissue using a new dimensional reduction technique.
Approach: A radial basis function (RBF) kernel support vector machine (SVM) model was trained on Raman spectra of prostate tissue from a 272-patient cohort (Centre hospitalier de l’Université de Montréal, CHUM) and tested on two independent cohorts of 76 patients [University Health Network (UHN)] and 135 patients (Centre hospitalier universitaire de Québec-Université Laval, CHUQc-UL). Two types of engineered features were used. Individual intensity features, i.e., Raman signal intensity measured at particular wavelengths and novel Raman spectra fitted peak features consisting of peak heights and widths.
Results: Combining engineered features improved classification performance for the three aforementioned classification tasks. The improvements for IDC-P/cancer classification for the UHN and CHUQc-UL testing sets in accuracy, sensitivity, specificity, and area under the curve (AUC) are (numbers in parenthesis are associated with the CHUQc-UL testing set): +4 % (+8 % ), +7 % (+9 % ), +2 % (6%), +9 (+9) with respect to the current best models. Discrimination between HGPIN and IDC-P was also improved in both testing cohorts: +2.2 % (+1.7 % ), +4.5 % (+3.6 % ), +0 % (+0 % ), +2.3 (+0). While no global improvements were obtained for the normal versus cancer classification task [+0 % (−2 % ), +0 % (−3 % ), +2 % (−2 % ), +4 (+3)], the AUC was improved in both testing sets.
Conclusions: Combining individual intensity features and novel Raman fitted peak features, improved the classification performance on two independent and multicenter testing sets in comparison to using only individual intensity features.
Automatic cancer sub-grading of radical prostatectomy (RP) specimens can support clinical studies seeking the prognostic indications of the sub-grades, and potentially benefits patient risk management and treatment planning. We developed and validated an automatic system which classifies each of nine subgrades (i.e. 4 sub-grades of Gleason grade 3, 3 sub-grades of Gleason grade 4, benign intervening, and other cancerous tissue) on digital histopathology whole-slide images (WSIs). The system was cross-validated against expert-drawn contours on a 25-patient data set comprising 92 mid-gland WSIs of RP specimens. The system used a transfer learning technique by fine-tuning AlexNet to classify each cancerous region of interest (ROI) according to sub-grade. We used leave-one-WSI-out cross-validation to measure classifier performance. The system yielded an area under the receiver-operating characteristic curve (AUC) higher than 0.8 for sub-grades of small fused Gleason 4 (G4), intermediate G3, and other cancerous tissue (AUC of 0.976); and AUCs higher than 0.7 for sub-grades of sparse G3, large cribriform G4, and desmoplastic G3.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.