Earth science research must bridge the gap between the atmosphere and the ocean to foster understanding of Earth's
climate and ecology. Typical ocean sensing is done with satellites or in situ buoys and research ships which are slow to
reposition. Cloud cover inhibits study of localized transient phenomena such as Harmful Algal Blooms (HAB). A fleet
of extended-deployment surface autonomous vehicles will enable in situ study of characteristics of HAB, coastal
pollutants, and related phenomena. We have developed a multiplatform telesupervision architecture that supports
adaptive reconfiguration based on environmental sensor inputs. Our system allows the autonomous repositioning of
smart sensors for HAB study by networking a fleet of NOAA OASIS (Ocean Atmosphere Sensor Integration System)
surface autonomous vehicles. In situ measurements intelligently modify the search for areas of high concentration.
Inference Grid and complementary information-theoretic techniques support sensor fusion and analysis. Telesupervision
supports sliding autonomy from high-level mission tasking, through vehicle and data monitoring, to teleoperation when
direct human interaction is appropriate. This paper reports on experimental results from multi-platform tests conducted
in the Chesapeake Bay and in Pittsburgh, Pennsylvania waters using OASIS platforms, autonomous kayaks, and multiple
simulated platforms to conduct cooperative sensing of chlorophyll-a and water quality.
We are developing a multi-robot science exploration architecture and system called the Telesupervised Adaptive Ocean
Sensor Fleet (TAOSF). TAOSF uses a group of robotic boats (the OASIS platforms) to enable in-situ study of ocean
surface and sub-surface phenomena. The OASIS boats are extended-deployment autonomous ocean surface vehicles,
whose development is funded separately by the National Oceanic and Atmospheric Administration (NOAA). The
TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy.
It allows multiple mobile sensing assets to function in a cooperative fashion, and the operating mode of the vessels to
range from autonomous control to teleoperated control. In this manner, TAOSF increases data-gathering effectiveness
and science return while reducing demands on scientists for tasking, control, and monitoring. It combines and extends
prior related work done by the authors and their institutions. The TAOSF architecture is applicable to other areas where
multiple sensing assets are needed, including ecological forecasting, water management, carbon management, disaster
management, coastal management, homeland security, and planetary exploration. The first field application chosen for
TAOSF is the characterization of Harmful Algal Blooms (HABs). Several components of the TAOSF system have been
tested, including the OASIS boats, the communications and control interfaces between the various hardware and
software subsystems, and an airborne sensor validation system. Field tests in support of future HAB characterization
were performed under controlled conditions, using rhodamine dye as a HAB simulant that was dispersed in a pond. In
this paper, we describe the overall TAOSF architecture and its components, discuss the initial tests conducted and
outline the next steps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.