In this paper a new approach to 3D human body tracking is proposed. A
sparse 3D reconstruction of the subject to be tracked is made using a structured light system consisting of a precalibrated LCD projector and a camera. At a number of points-of-interest, easily detectable features are projected. The resulting sparse 3D reconstruction is
used to estimate the body pose of the tracked person. This new estimate of the body pose is then fed back to the structured light system and allows to adapt the projected patterns, i.e. decide where to project features. Given the observations, a physical simulation is used to estimate the body pose by attaching forces to the limbs of the body model. The sparse 3D observations are augmented by denser silhouette information, in order to make the tracking more robust.
Experiments demonstrate the feasibility of the proposed approach and show that the high speeds that are required due to the closed feedback loop can be achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.