Polycrystalline SiGe layers have been oxidized in either dry or wet atmospheres in order to form Ge nanoparticles embedded in a dielectric matrix. The evolution of the growing oxides and the SiGe layer during the oxidation processes have been characterized using Raman spectroscopy, X-ray diffraction, Rutherford backscattering and Fourier transform infrared spectroscopy. Ge nanocrystals have been formed in both oxidation atmospheres. Violet luminescence emission (3.1 eV) has been observed and its relation to the oxidation processes has been studied. For dry oxidation, the luminescence intensity appears suddenly when the pure segregated Ge layer starts to be oxidized forming Ge nanocrystals. It remains as long as Ge nanoparticles are present. For wet oxidation, an initial luminescence appears, that depends on the oxide thickness, which is related to the formation of Ge-rich nanoclusters trapped in the SiGeO growing oxide. A sharp increase of the luminescence for long oxidation times is then observed, which is related to the formation of Ge- nanoparticles by the oxidation of the segregated Ge. In both processes the luminescence is quenched for long enough oxidation time. The intensity of the luminescence in the dry oxidized samples, for equal initial thickness of the polycrystalline SiGe layer, is 10 times higher than in the wet oxidized ones. The violet luminescence is neither related to the recombination of excitons inside the Ge nanocrystals nor to defects in the germanium oxide. Ge oxygen deficient centers, located at the interface between the nanoparticles and the dielectric matrix, are proposed as the origin of the violet luminescence.
This paper reports the change in the bulk transport properties of p-type MCT samples induced after a rapid thermal annealing (RTA) process. This change is produced homogeneously within the crystal without interchange of mercury with the surrounding atmosphere. The carrier concentration varies toward an equilibrium value that depends only on the annealing temperature. For the material and temperatures investigated (250 to 450 degree(s)C) the equilibrium carrier concentration depends exponentially on the inverse of the temperature, its value ranges between 7.8 X 1016 and 4.5 X 1017 cm-3. The time needed to reach the equilibrium is a function of the temperature, varying from 10 seconds to 420 degree(s)C to 200 seconds at 250 degree(s)C. Hole mobility is also affected by the RTA process, being its variation also a function of the process temperature and time, but with different values of the evolution parameters. A saturated temperature independent positron lifetime of 310 ps has been measured in all the samples. We attribute this value to presence of a high concentration of mercury vacancy defects, where positrons are annihilated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.