The combination of a high-Q optical microcavity and a saturable absorber is expected to enable mode locking between different transverse modes in a microcavity. This work studies saturable absorption in carbon nanotubes (CNTs) on microtoroids. The CNTs are selectively grown on silica microtoroids by chemical vapor deposition after the cobalt catalysis is selectively deposited on the surface. A Raman spectrum measurement showed that the grown CNTs are about 1.0 nm in diameter, and that the device is applicable for use in the 1550 nm band. The saturable absorption by CNTs is investigated with a counter-propagating pump-probe experiment.
New spherical resonators with internal defects are introduced to show anomalous whispering gallery modes (WGMs). The defect induces a symmetry breaking spherical cavity and splits the WGMs. A couple of defects, a hollow sphere (bubble), and a hollow ring, have been studied. The hollow sphere was fabricated and the splitting of WGM was observed. In this paper, this "non-degenerated WGMs (non-DWGMs) resonance" in a microsphere with hollow defect structure is reviewed based on our research. The resonance of WGMs in a sphere is identified by three integer parameters: the angular mode number, l, azimuthal mode number m, and radial mode number, n. The placement of the defect such as a hollow ring or single bubble is shown to break symmetry and resolve the degeneracy concerning m. This induces a variety of resonant wavelengths of the spherical cavity. A couple of simulations using the eigenmode and transient analyses propose how the placed defects affect the WGM resonance in the spherical cavity. For the sphere with a single bubble defect, the experimentally observed resonances in Nd-doped tellurite glass microsphere with a single bubble are clarified to be due to the splitting of resonance modes, i.e., the existence of "non-DWGMs" in the sphere. The defect bubble plays a role of opening the optically wide gate to introduce excitation light for Nd3+ pumping using non-DWGMs in the sphere efficiently.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.