This work is concerned with research of Haar wavelet threshold sensitivity for detection of non-reflective events corresponding to optical fiber fusion splices on fragments of fiber optic link traces measured by optical time domain reflectometer (OTDR). We performed test series contained 40 step-by-step repeatable splicing of the same couple of standard singlemode fibers of ITU-T Rec. G.652 spools with length 2.2 km and 4.2 km and outer termination by conventional singlemode FC/UPC pigtails for OTDR connection and following bidirectional trace measurement. Results of insertion loss estimation and accomplished by OTDR software automated detection of non-reflective event corresponding to fusion splice of described optical fibers as well as ability of its visual manual localization on trace were recorded. The first 30 splices were realized by fusion splicer conventional program for jointing standard singlemode optical fibers of ITU-T Rec. ITU-T G.652, while the next 10 splices were done under “attenuator” mode with preset increased insertion loss. Described link traces were measured by OTDR operating in a standard mode with high spatial resolution under pulse width 20 ns and appropriate dynamic range with far-end OSNR 6.5 dB at wavelength 1550 nm. As a result 80 traces were analyzed in both automated and manual modes with fusion splice insertion loss varied from 0.002 dB to 0.554 dB. At the next stage we applied continues Haar wavelet transform for detection non-reflective event on measured traces of lab fiber optic link containing described one fusion splice with total length about 6.4 km. According to results, wavelet transform of described link trace provides detection of extremely low loss non-reflective events with OTDR reading down to own error corresponding to 0.020…0.030 dB range under improved scaling over normalized spatial diagram of wavelet coefficients.
This work is concerned with development of simple method for making of alternative fiber optic Raman probe components containing silica optical fibers with formed precision micro-lens under desired configuration and geometry parameters at the fiber end face by commercially available field fusion splicer kit and its modified software settings. We present methods for writing both hemispherical lenses and ball lenses as well as tapered cones, results of their experimental approbation and results of following carried out experimental research of fusion splicer software settings impact on microlensed optical fiber geometry parameters – radius and length.
This work presents method for performing precision macro-structure defects “tapers” and “up-tapers” written in conventional silica telecommunication multimode optical fibers by commercially available field fusion splicer with modified software settings and following writing fiber Bragg gratings over or near them. We developed technique for macrodefect geometry parameters estimation via analysis of photo-image performed after defect writing and displayed on fusion splicer screen. Some research results of defect geometry dependence on fusion current and fusion time values re-set in splicer program are represented that provided ability to choose their “the best” combination. Also experimental statistical researches concerned with “taper” and “up-taper” diameter stability as well as their insertion loss values during their writing under fixed corrected splicer program parameters were performed. We developed technique for FBG writing over or near macro-structure defect. Some results of spectral response measurements produced for short-length samples of multimode optical fiber with fiber Bragg gratings written over and near macro-defects prepared by using proposed technique are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.