Tau proteins in the gray matter are widely known to be a part of Alzheimer’s disease symptoms. They can aggregate in three different structures within the brain: neurites, tangles, and neuritic plaques. The morphology and the spatial disposition of these three aggregates are hypothesised to be correlated to the advancement of the disease. In order to establish a behavioural disease model related to the Tau proteins aggregates, it is necessary to develop algorithms to detect and segment them automatically. We present a 5-folded pipeline aiming to perform with clinically operational results. This pipeline is composed of a non-linear colour normalisation, a CNN-based image classifier, an Unet-based image segmentation stage, and a morphological analysis of the segmented objects. The tangle detection and segmentation algorithms improve state-of-the-art performances (75.8% and 91.1% F1- score, respectively), and create a reference for neuritic plaques detection and segmentation (81.3% and 78.2% F1-score, respectively). These results constitute an initial baseline in an area where no prior results exist, as far as we know. The pipeline is complete and based on a promising state-of-the-art architecture. Therefore, we consider this study a handy baseline of an impactful extension to support new advances in Alzheimer’s disease. Moreover, building a fully operational pipeline will be crucial to create a 3D histology map for a deeper understanding of clinico-pathological associations in Alzheimer’s disease and the histology-based evidence of disease stratification among different sub-types.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.