We studied numerically 1000 nm, 1 ps pulse width propagation in a PT-symmetric nonlinear directional coupler in the form of dual-core photonic crystal fiber. The base material of the fiber is phosphate glass, while gain and loss channels are implemented by ytterbium-based and copper-based doping, respectively. The propagation models were based on coupled generalized nonlinear Schrödinger equations solved with the Split-Step method: 1) extended model including coupling coefficient dispersion, self-steepening nonlinearity and its spectral dependence, stimulated Raman contribution, cross-phase modulation and Gaussian-like gain and loss coefficient frequency function; 2) simplified model with second-order dispersion term, linear coupling and first-order nonlinearity. We predicted two states of light propagation: 1) linear pulse energy oscillation between gain and loss channels (PT-symmetry state) at 100 pJ; 2) retention of the pulse in the excited gain channel (broken PT-symmetry) at 445 pJ. The presented results open perspective on the demonstration of fiber-based all-optical switching devices.
We present the study of the dynamics of a two-ring waveguide structure with space-dependent coupling, linear gain and nonlinear absorption; the system that can be implemented in polariton condensates, optical waveguides and nanocavities. We find that due to the modulation instability, it is possible to observe several complex nonlinear phenomena, including spontaneous symmetry breaking, stable inhomogeneous states, oscillating states (limit cycle) and even chaotic dynamics. We compare two systems of coupled rings, with one and two symmetrically located coupling centres.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.