Automatic road crack detection using image/video data plays a crucial role in the maintenance of road service life and the improvement of driving experiences. In this paper, an improved automatic road crack detection system is proposed to reduce false detection under various noisy road surface conditions and to improve sensitivity in detecting light and thin cracks. The proposed system combines a variety of traditional image processing techniques, such as filtering and morphological processing, with scalable and efficient machine learning algorithms. Real road images with various noise conditions are taken to evaluate the performance of the proposed system. Experimental results have shown that the proposed system improved detection sensitivity and reduced false detection compared to some existing system, thus achieving higher detection accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.