We have experimentally obtained dispersion-managed solitons with sidebands in a passively mode-locked thulium-doped fiber laser. The stable single soliton with sidebands can be converted into two soliton pulses at the pump power of 867 mW with appropriate settings of the polarization controllers (PCs). By increasing the pump power and cautiously adjusting the PCs, the three, four, and five soliton pulses with nonuniform intensity operate with stability in the cavity due to the global soliton interaction caused by unstable continuous waves. Furthermore, the soliton bunch can be observed at the pump power of 1 W. The position of solitons in the soliton bunch is random with a fixed separation that is controllable by changing the linear phase delay. Our work gives insight into the dynamics of multipulse dispersion-managed solitons in a 2-μm mode-locked fiber laser.
We experimentally studied a passive mode-locked square-wave fiber laser with net-normal dispersion by using a nonlinear amplifying loop mirror. The output pulse width of the square-wave pulse (SWP) can be extended with the increasing of the pump power as well as single pulse energy. The SWP can be amplified without shape distortion when the mode-locked laser is injected into an erbium-ytterbium codoped fiber amplifier. Then, by inputting the amplified SWPs into a single mode fiber (SMF), a supercontinuum (SC) can be observed with the spectral range of about 1550 to 1850 nm. Broader and flatter SC with the 20-dB spectral range of about 1550 to 1950 nm can also be generated using a segment of dispersion-shifted fiber instead of SMF.
A simple approach to generate passively harmonic mode-locked pulse trains in thulium-doped fiber laser based on nonlinear polarization rotation is proposed and demonstrated. Three different ways of mode-locked techniques have been employed in our structure to generate passively high-order harmonic mode-locked pulse trains; 128th-order passively harmonic mode-locked pulse train is achieved in the experiment and the repetition rate is 406.8 MHz. With the increase of the pump power, multiwavelength output can be tuned. A segment of dispersion compensation fiber is used to compensate the dispersion in the cavity; thus, the single pulse width is compressed from 617 to 48 ps.
To suppress the interference of the target detecting in the turbid medium, a kind of polarization detection technology based on Curvelet transform was applied. This method firstly adjusts the angles of polarizing film to get the intensity images of the situations at 0°,60° and 120°, then deduces the images of Stokes vectors, degree of polarization (DOP) and polarization angle (PA) according to the Mueller matrix. At last the DOP and intensity images can be decomposed by Curvelet transform to realize the fusion of the high and low coefficients respectively, after the processed coefficients are reconstructed, the target which is easier to detect can be achieved. To prove this method, many targets in turbid medium have been detected by polarization method and fused their DOP and intensity images with Curvelet transform algorithm. As an example screws in moderate and high concentration liquid are presented respectively, from which we can see the unpolarized targets are less obvious in higher concentration liquid. When the DOP and intensity images are fused by Curvelet transform, the targets are emerged clearly out of the turbid medium, and the values of the quality evaluation parameters in clarity, degree of contract and spatial frequency are prominently enhanced comparing with the unpolarized images, which can show the feasibility of this method.
In this paper, a segment of thulium-doped fiber is pumped by a 976nm laser diode.Broadband gain
at centerwavelength of 1953nm is achieved. The maximum amplified spontaneous emission
bandwidth is 8nm. Simultaneously, self- oscillation of wavelength spacing 0.073nm is
observed. The output power and self- oscillation modes increase with pump power increasing and
wavelength spacing of self-oscillation is unchanged.The relation between fiber length and output
power at pump power 400mW is analyzed. Higher output power can be abtained by selecting a
appropriate fiber length when pump power is unchanged. Through the experiment, a weak
absorption band of thulium-doped fiber near 976nm is verified. The structure can be used as
narrow linewidth broadband source near 1950nm with the characteristic of low cost, simple
structure and good stability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.