We present an experimental ischemic stroke study using our newly-developed multimodal imaging system that integrates photoacoustic computed tomography (PACT), high-frequency ultrasound imaging, and acoustic angiographic tomography, or PAUSAT. PAUSAT is capable of three-dimensional high-frequency ultrasound imaging of the brain morphology, micro-bubble-enabled acoustic angiography of the brain blood perfusion, and multispectral PACT of brain blood oxygenation. PAUSAT was able to clearly show the brain vascular changes after ischemic stroke, including significantly reduced blood perfusion and oxygenation. Using PAUSAT, stroke infarct volume was reliably measured. The PAUSAT results were confirmed by laser speckle imaging and histology.
Optical-resolution photoacoustic microscopy (OR-PAM) can image biological tissues at micrometer level resolution. However, the imaging speed of traditional OR-PAM is often too slow for capturing dynamic information. In this work, we demonstrate a high-speed OR-PAM system using a water-immersible two-axis torsion-bending scanner, in which the fast axis employs the torsion scanning while the slow axis works at the bending mode. The system has achieved a cross-sectional frame rate of 400 Hz, and a volumetric imaging speed of 1 Hz over a field of view of 1.5 × 2.5 mm2. We have demonstrated high-speed OR-PAM of fast hemodynamic changes in vivo.
Optical-resolution photoacoustic microscopy (OR-PAM) has become a popular tool in small-animal studies. However, previous OR-PAM techniques variously lacked a high imaging speed, a high spatial resolution, and/or a large field of view. Here we report a high-speed OR-PAM system using an innovative water-immersible polygon-mirror scanner, which has achieved a cross-sectional frame rate of as high as 1200 Hz over a 12-mm scanning range. Using this polygon-scanner-based OR-PAM system, we have performed various studies on mouse models with stroke and cardiac arrests. We expect that the new OR-PAM system will become a powerful tool for imaging hemodynamics and neuronal functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.