Signal CCD/CMOS sensors capture image information by covering the sensor surface with a color filter array(CFA). For each pixel, only one of three primary colors(red, green and blue) can pass through the color filter array(CFA). The other two missing color components are estimated by the values of the surrounding pixels. In Bayer array, the green components are half of the total pixels, but both red pixel and blue pixel components are quarter, so green components contain more information, which can be reference to color interpolation of red components and blue components. Based on this principle, in this paper, a simple and effective color interpolation algorithm based on green components and signal correlation for Bayer pattern images was proposed. The first step is to interpolate R, G and B components using the method-bilinear interpolation. The second step is to revise the results of bilinear interpolation by adding some green components on the results of bilinear interpolation. The calculation of the values to be added should consider the influence of correlation between the three channels. There are two major contributions in the paper. The first one is to demosaick G component more precisely. The second one is the spectral-spatial correlations between the three color channels is taken into consideration. At last, through MATLAB simulation experiments, experimental pictures and quantitative data for performance evaluation-Peak Signal to Noise Ratio(PSNR) were gotten. The results of simulation experiments show, compared with other color interpolation algorithms, the proposed algorithm performs well in both visual perception and PSNR measurement. And the proposed algorithm does not increase the complexity of calculation but ensures the real-time of system. Theory and experiments show the method is reasonable and has important engineering significance.
A digital camera capture images by covering the sensor surface with a color filter array (CFA), only get a color
sample at pixel location. Demosaicking is a process by estimating the missing color components of each pixel to get a
full resolution image. In this paper, a new algorithm based on edge adaptive and different weighting factors is proposed.
Our method can effectively suppress undesirable artifacts. Experimental results based on Kodak images show that the
proposed algorithm obtain higher quality images compared to other methods in numerical and visual aspects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.