In this paper, a new type of wheel polishing tool is designed. Through the bevel gear structure, only one motor is used to realize the revolution and rotation of the polishing wheel, which makes the structure simple, small inertia, and stable operation. Traditional polishing wheels have a three-layer structure: internal rigid hub, middle flexible rubber, and external polishing pad. It is found through experiments that the hardness of rubber has a greater influence on the tool influence function (TIF). Therefore, by optimizing the hardness of the rubber, we obtained a TIF very close to the Gaussian shape, which is conducive to the rapid convergence of the surface error. Finally, the effects of polishing wheel speed, polishing pressure and polishing time on the TIF, as well as the stability of the TIF, are studied through experiments. Experiments show that: (1) There is no linear relationship between the removal efficiency of the polishing wheel, the polishing wheel speed, and the polishing pressure, but as the parameter increases, the increase in the removal efficiency slows down; (2) There is a good linear relationship between the removal amount of the polishing wheel and time; (3) The TIF is very stable, and the stability of the TIF reaches 98%.
To improve the reflecting properties of all CFRP mirror, a high reflecting coating must be prepared on the mirror surface. In this paper, the effect of the roughness, film material and the deposition temperature on the reflecting rate was discussed. In the experiments, it was observed that the film exhibited higher reflecting rate on the smoother surface; meanwhile, the deposition rate must be controlled below the soften point of the surface replicated resin; if not, pits will generate on the surface and reduce reflecting rate. Ag film system exhibited higher reflecting rate than Al films. Finally, a multilayer film Ag and SiO2 was deposited on CFRP mirror, with a reflecting rate over 95% between 450nm and 800 nm.
To realize ultra-lightweight ratio, mirrors were fabricated with CFRP (carbon fiber reinforced plastic composites) by replication technology. The replication technology was aimed to improve surface accuracy. Though replication technique, the surface accuracy was improved to 0.098 λ (λ=632.8nm, RMS), and the roughness of 1.9 nm (Ra) can be achieved. The CFRP mirror presented poor dimension stability, the surface accuracy increased gradually in air. In order to solve this problem, a polymer coating was carried on mirror surface. The polymer coating exhibited better dimension stability, the surface accuracy can be maintained under 0.15 λ for more than 200 days.
Due to low density, high specific stiffness, and low thermal expansion, carbon fiber reinforced plastic (CFRP) is believed to be one of the potential material choices for optical mirrors. But CFRP is one of the two-phase materials that cannot be used as optical surface and must be surface modified. To develop one kind of grid-reinforced CFRP mirror, optical replication technology was used to modify and achieve high-precision surface, and theoretical deformation due to replica resin curing and deformation caused by laminates’ manufacturing errors were studied in detail. Optical replication experiment has shown that λ / 20 root mean square high-precision surface can be achieved for ϕ100-mm grid-reinforced carbon fiber mirrors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.