This paper presents a distributed multi-class Gaussian process (MCGP) algorithm for ground vehicle classification using acoustic data. In this algorithm, the harmonic structure analysis is used to extract features for GP classifier training. The predictions from local classifiers are then aggregated into a high-level prediction to achieve the decision-level fusion, following the idea of divide-and-conquer. Simulations based on the acoustic-seismic classification identification data set (ACIDS) confirm that the proposed algorithm provides competitive performance in terms of classification error and negative log-likelihood (NLL), as compared to an MCGP based on the data-level fusion where only one global MCGP is trained using data from all the sensors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.