This paper focuses on actuating mode shapes of cellulose-based electro-active paper (EAPap) in order to investigate its suitability as actuators. Firstly, actuating mechanism of EAPap is addressed based on intrinsic characteristics of cellulose structures under electric fields. EAPap actuator is then fabricated by embedding gold as electrodes into both sides of cellophane sheets. Actuating mode shapes under electric fields are phenomenological measured via laser scanning vibrometer at different exciting frequencies as well as relative humidity. Various actuating performances with large deformations are obtained by applying low electric fields, which can produce a suitable deformation capability with light weight, low power consumption and simple fabrication. Experimental results provide that EAPap can be used as a potential actuating candidate for shape control of smart structures, along with bio-inspired actuator materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.