This paper studies two different approaches for evanescent wave optical sensing: an horizontal one and a vertical one. In horizontal waveguides, the evanescent wave is distributed on the upper cladding. While in a vertical configuration, the evanescent wave is distributed on the left and right sides of the waveguide. In an horizontal configuration the evanescent wave can be also on both sides of the waveguide in order to increase the optical energy for sensing if the substrate under the waveguide is locally removed. However, in this configuration to achieve sensitive devices, the layers have to be freestanding and thin [1] limiting practical implementations of such approaches. Furthermore, very few materials can be defined as tall and thin in the case of a vertical configuration, as the deposition techniques often used (PECVD/LPCVD) are meant for films in the couple of micron range. In the following we will investigate the properties of the materials used but also the fabrication feasibility for both configurations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.