In this paper, we present design, manufacturing, and wind tunnel test for a small-scale expandable morphing wing. The wing is separated into inner and outer wings as a typical bird wing. The part from leading edge of the wing chord is made of carbon composite strip and balsa. The remaining part is covered with curved thin carbon fiber composite mimicking wing feathers. The expandable wing is driven by a small DC motor, reduction gear, and fiber reinforced composite linkages. Rotation of the motor is switched to push-pull linear motion by a screw and the linear motion of the screw is transferred to linkages to create wing expansion and folding motions. The wing can change its aspect ratio from 4.7 to 8.5 in about 2 seconds and the speed can be controlled. Two LIPCAs (Lightweight Piezo-Composite Actuators) are attached under the inner wing section and activated on the expanded wing state to modify camber of the wing. In the wind tunnel test, change of lift, drag, and pitching moment during wing expansion have been investigated for various angles of attack. The LIPCA activation has created significant additional lift.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.